RCS Angles - Computing and Visualizing Rho/Theta in STK

Rho is defined as the angle between the incident vector and the nose of the aircraft. By convention, the Body \mathbf{X} axis aligns with the aircraft's nose.

Theta is an angle measured entirely in the Body YZ plane (perpendicular to the aircraft's nose direction). Theta is measured relative to the Body \mathbf{Z} axis, and is equal to the angle between the aircraft Body \mathbf{Z} axis and the projection of the incident vector onto the aircraft Body YZ plane.

The Rho and Theta angles are shown below:

- The aircraft's nose is aligned with the Body \mathbf{X} vector, and the incident vector is shown in red. The Body YZ plane is shown in white.
- Rho is the angle between the Body \mathbf{X} and incident vectors (arc shown in yellow). The yellow plane shows the plane that Rho lives in - it contains the incident vector and the aircraft Body \mathbf{X} vector.
- Theta lives entirely in the Body XY plane. It is measured between the Body \mathbf{Z} axis and the projection of the incident vector onto the Body YZ plane (intersection of the yellow/white planes).

Rho \& Theta Angles

In STK, Rho can be calculated using a Between Vectors angle in Analysis Workbench.

Theta can be modeled by creating a Dihedral Angle in Analysis Workbench. With the Dihedral Angle, theta is forced to live entirely in the Body YZ plane.

Rho and Theta angle definitions in STK

Visualize and Report

Visualize the angles on the Aircraft Properties > 3D Graphics > Vector window. The dihedral angle supporting arcs can be shown if desired.

To report or graph the values of Rho and Theta, a custom report or graph can be created with data providers from the Angles group. By adding Time, RCS_Rho, RCS_Theta a data display/report can be created, or a graph can be generated.

